Part Number Hot Search : 
1206L BL372 1206L BAV70U PH9025L 1N4005L ST72C3 SX14Q004
Product Description
Full Text Search
 

To Download IRFP7530PBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  hexfet ? power mosfet d s g application ? ? brushed motor drive applications ? ? bldc motor drive applications ?? battery powered circuits ? ? half-bridge and full-bridge topologies ? ? synchronous rectifier applications ? ? resonant mode power supplies ? ? or-ing and redundant power switches ? ? dc/dc and ac/dc converters ? ? dc/ac inverters benefits ? ? improved gate, avalanche and dynamic dv/dt ruggedness ? ? fully characterized capacitance and avalanche soa ? ? enhanced body diode dv/dt and di/dt capability ? ? lead-free, rohs compliant v dss 60v r ds(on) typ. 1.65m ?? max 2.00m ?? i d (silicon limited) 281a ? i d (package limited) 195a ? fig 1. typical on-resistance vs. gate voltage fig 2. maximum drain current vs. case temperature to-247 IRFP7530PBF g d s gate drain source base part number package type standard pack orderable part number form quantity IRFP7530PBF to-247 tube 25 IRFP7530PBF 2 4 6 8 10 12 14 16 18 20 v gs, gate -to -source voltage (v) 1 2 3 4 5 6 7 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) i d = 100a t j = 25c t j = 125c g d s strong ir fet? IRFP7530PBF 25 50 75 100 125 150 175 t c , case temperature (c) 0 50 100 150 200 250 300 i d , d r a i n c u r r e n t ( a ) limited by package 1 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014
2 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF absolute maximum rating symbol parameter max. units i d @ t c = 25c continuous drain current, v gs @ 10v (silicon limited) 281 ? a i d @ t c = 100c continuous drain current, v gs @ 10v (silicon limited) 199 ? i d @ t c = 25c continuous drain current, v gs @ 10v (wire bond limited) 195 i dm pulsed drain current ?? 760 p d @t c = 25c maximum power dissipation 341 w linear derating factor 2.3 w/c v gs gate-to-source voltage 20 v t j t stg operating junction and storage temperature range -55 to + 175 ? c ? soldering temperature, for 10 seconds (1.6mm from case) 300 mounting torque, 6-32 or m3 screw 10 lbfin (1.1 nm) ? avalanche characteristics ? e as (thermally limited) single pulse avalanche energy ?? 557 mj e as (thermally limited) single pulse avalanche energy ?? 1102 i ar avalanche current ? see fig 15, 16, 23a, 23b a e ar repetitive avalanche energy ? mj thermal resistance ? symbol parameter typ. max. units r ? jc junction-to-case ?? ??? 0.44 c/w ? r ? cs case-to-sink, flat greased surface 0.24 ??? r ? ja junction-to-ambient ? ??? 40 static @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions v (br)dss drain-to-source breakdown voltage 60 ??? ??? v v gs = 0v, i d = 250a ? v (br)dss / ? t j breakdown voltage temp. coefficient ??? 47 ??? mv/c reference to 25c, i d = 1ma ? r ds(on) static drain-to-source on-resistance ??? 1.65 2.00 v gs = 10v, i d = 100a ? ??? 2.10 ??? v gs = 6.0v, i d = 50a ? v gs(th) gate threshold voltage 2.1 ??? 3.7 v v ds = v gs , i d = 250a i dss drain-to-source leakage current ??? ??? 1.0 a v ds =60 v, v gs = 0v ??? ??? 150 v ds =60v,v gs = 0v,t j =125c i gss gate-to-source forward leakage ??? ??? 100 na v gs = 20v gate-to-source reverse leakage ??? ??? -100 v gs = -20v r g gate resistance ??? 2.1 ??? ?? m ??? notes: ?? calculated continuous current based on maximum allowable ju nction temperature. bond wire current limit is 195a by source bonding technology. note that current limit ations arising from heating of the device leads may occur with some lead mounting arrangements. (refer to an-1140) ?? repetitive rating; pulse width limited by max. junction temperature. ? limited by t jmax , starting t j = 25c, l = 111h, r g = 50 ? , i as = 100a, v gs =10v. ?? i sd ? 100a, di/dt ? 1338a/s, v dd ? v (br)dss , t j ?? 175c. ?? pulse width ? 400s; duty cycle ? 2%. ? c oss eff. (tr) is a fixed capacitance that gives the same charging time as c oss while v ds is rising from 0 to 80% v dss . ? c oss eff. (er) is a fixed capacitance that gives the same energy as c oss while v ds is rising from 0 to 80% v dss . ? r ? is measured at t j approximately 90c. ? limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 ? , i as = 47a, v gs =10v.
3 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF dynamic electrical characteristics @ t j = 25c (unless otherwise specified) symbol parameter min. typ. max. units conditions gfs forward transconductance 242 ??? ??? s v ds = 10v, i d =100a q g total gate charge ??? 274 411 i d = 100a q gs gate-to-source charge ??? 64 ??? v ds = 30v q gd gate-to-drain charge ??? 83 ??? v gs = 10v q sync total gate charge sync. (qg? qgd) ??? 191 ??? t d(on) turn-on delay time ??? 52 ??? ns v dd = 30v t r rise time ??? 141 ??? i d = 100a t d(off) turn-off delay time ??? 172 ??? r g = 2.7 ?? t f fall time ??? 104 ??? v gs = 10v ? c iss input capacitance ??? 13703 ??? pf ? v gs = 0v c oss output capacitance ??? 1266 ??? v ds = 25v c rss reverse transfer capacitance ??? 806 ??? ? = 1.0mhz, see fig.7 c oss eff.(er) effective output capacitance (energy related) ??? 1267 ??? v gs = 0v, vds = 0v to 48v ? c oss eff.(tr) output capacitance (time related) ??? 1630 ??? v gs = 0v, vds = 0v to 48v ? diode characteristics ? symbol parameter min. typ. max. units conditions i s continuous source current ??? ??? 281 ? a mosfet symbol (body diode) showing the i sm pulsed source current ??? ??? 760 integral reverse (body diode) ??? p-n junction diode. v sd diode forward voltage ??? ??? 1.2 v t j = 25c,i s = 100a,v gs = 0v ?? dv/dt peak diode recovery dv/dt ?? ??? 8.1 ??? v/ns t j = 175c,i s =100a,v ds = 60v ? t rr reverse recovery time ??? 51 ??? ns t j = 25c v dd = 51v ??? 54 ??? t j = 125c i f = 100a, q rr reverse recovery charge ??? 86 ??? nc t j = 25c di/dt = 100a/s ??? ??? 102 ??? t j = 125c ? i rrm reverse recovery current ??? 2.9 ??? a t j = 25c ? nc ? d s g
4 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF fig 6. normalized on-resistance vs. temperature fig 5. typical transfer characteristics fig 4. typical output characteristics fig 3. typical output characteristics fig 7. typical capacitance vs. drain-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v ? 60s pulse width tj = 25c 4.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) ? 60s pulse width tj = 175c 4.5v vgs top 15v 10v 8.0v 7.0v 6.0v 5.5v 5.0v bottom 4.5v 2 3 4 5 6 7 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 25c t j = 175c v ds = 25v ? 60s pulse width -60 -20 20 60 100 140 180 t j , junction temperature (c) 0.4 0.8 1.2 1.6 2.0 2.4 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( n o r m a l i z e d ) i d = 100a v gs = 10v 0 50 100 150 200 250 300 350 q g , total gate charge (nc) 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 48v v ds = 30v vds= 12v i d = 100a fig 8. typical gate charge vs. gate-to-source voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 1000000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss
5 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF fig 10. maximum safe operating area fig 11. drain-to-source breakdown voltage fig 9. typical source-drain diode forward voltage fig 12. typical c oss stored energy 0.1 0.4 0.7 1.0 1.3 1.6 1.9 v sd , source-to-drain voltage (v) 0.1 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 25c t j = 175c v gs = 0v -60 -20 20 60 100 140 180 t j , temperature ( c ) 65 68 71 74 77 80 v ( b r ) d s s , d r a i n - t o - s o u r c e b r e a k d o w n v o l t a g e ( v ) id = 1.0ma 0 102030405060 v ds, drain-to-source voltage (v) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 e n e r g y ( j ) fig 13. typical on-resista nce vs. drain current 0 100 200 300 400 500 i d , drain current (a) 1 2 3 4 5 6 7 8 9 10 r d s ( o n ) , d r a i n - t o - s o u r c e o n r e s i s t a n c e ( m ? ) vgs = 5.5v vgs = 6.0v vgs = 7.0v vgs = 8.0v vgs = 10v 0.1 1 10 v ds , drain-tosource voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) tc = 25c tj = 175c single pulse 1msec 10msec operation in this area limited by r ds (on) 100sec dc limited by package
6 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF fig 14. maximum effective transient thermal impedance, junction-to-case fig 16. maximum avalanche energy vs. temperature fig 15. avalanche current vs. pulse width notes on repetitive avalanche curves , figures 15, 16: (for further info, see an-1005 at www.irf.com) 1.avalanche failures assumption: purely a thermal phenomenon and failure occurs at a temperature far in excess of t jmax . this is validated for every part type. 2. safe operation in avalanche is allowed as long ast jmax is not exceeded. 3. equation below based on circuit and waveforms shown in figures 23a, 23b. 4. p d (ave) = average power dissipation per single avalanche pulse. 5. bv = rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. i av = allowable avalanche current. 7. ? t = allowable rise in junction temperature, not to exceed t jmax (assumed as 25c in figure 15, 16). t av = average time in avalanche. d = duty cycle in avalanche = tav f z thjc (d, t av ) = transient thermal resistance, see figures 14) pd (ave) = 1/2 ( 1.3bvi av ) = ? t/ z thjc i av = 2 ? t/ [1.3bvz th ] e as (ar) = p d (ave) t av ?? 1e-006 1e-005 0.0001 0.001 0.01 0.1 t 1 , rectangular pulse duration (sec) 0.0001 0.001 0.01 0.1 1 t h e r ma l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc 25 50 75 100 125 150 175 starting t j , junction temperature (c) 0 100 200 300 400 500 600 e a r , a v a l a n c h e e n e r g y ( m j ) top single pulse bottom 1.0% duty cycle i d = 100a 1.0e-06 1.0e-05 1.0e-04 1.0e-03 1.0e-02 1.0e-01 tav (sec) 1 10 100 1000 a v a l a n c h e c u r r e n t ( a ) allowed avalanche current vs avalanche pulsewidth, tav, assuming ?? j = 25c and tstart = 150c. allowed avalanche current vs avalanche pulsewidth, tav, assuming ? tj = 150c and tstart =25c (single pulse)
7 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF fig 17. threshold voltage vs. temperature fig 21. typical stored charge vs. dif/dt fig 20. typical stored charge vs. dif/dt -75 -50 -25 0 25 50 75 100 125 150 175 t j , temperature ( c ) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 v g s ( t h ) , g a t e t h r e s h o l d v o l t a g e ( v ) id = 250a id = 1.0ma id = 1.0a 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 60a v r = 51v t j = 25c t j = 125c 0 200 400 600 800 1000 di f /dt (a/s) 0 5 10 15 20 i r r m ( a ) i f = 100a v r = 51v t j = 25c t j = 125c fig 19. typical recovery current vs. dif/dt 0 200 400 600 800 1000 di f /dt (a/s) 50 100 150 200 250 300 350 400 450 q r r ( n c ) i f = 60a v r = 51v t j = 25c t j = 125c fig 18. typical recovery current vs. dif/dt 0 200 400 600 800 1000 di f /dt (a/s) 50 100 150 200 250 300 350 400 q r r ( n c ) i f = 100a v r = 51v t j = 25c t j = 125c
8 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF fig 22. peak diode recovery dv/dt test circuit for n-channel hexfet ? power mosfets fig 23a. unclamped inductive test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v fig 24a. switching time test circuit fig 25a. gate charge test circuit t p v (br)dss i as fig 23b. unclamped inductive waveforms fig 24b. switching time waveforms vds vgs id vgs(th) qgs1 qgs2 qgd qgodr fig 25b. gate charge waveform vdd ?
9 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF to-247ac package outline (dimensions are shown in millimeters (inches)) to-247ac part marking information note: for the most current drawing please refer to ir website at http://www.irf.com/package/ to-247ac package is not recommended for surface mount application. year 1 = 2001 date code part number international logo rectifier assembly 56 57 irfpe30 135h line h indicates "lead-free" week 35 lot code in the assembly line "h" assembled on ww 35, 2001 notes: this part marking information applies to devices produced after 02/26/2001 note: "p" in assembly line position example: with assembly this is an irfpe30 lot code 5657
10 www.irf.com ? 2014 international rectifier submit datasheet feedback november 7, 2014 ? IRFP7530PBF ? qualification standards can be found at international rectifier?s web site: http://www.irf.com/product-info/reliability/ ?? applicable version of jedec standar d at the time of product release. qualification information ? ? qualification level ? industrial (per jedec jesd47f) ?? moisture sensitivity level to-247 n/a rohs compliant yes ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ revision history date comments 11/7/2014 ?? updated e as (l =1mh) = 1102mj on page 2 ?? updated note 9 ?limited by t jmax , starting t j = 25c, l = 1mh, r g = 50 ? , i as = 47a, v gs =10v?. on page 2


▲Up To Search▲   

 
Price & Availability of IRFP7530PBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X